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Intersubband linear and third-order nonlinear optical properties of conical quantum dots with infinite
barrier potential are studied. The electronic structure of conical quantum dots through effective mass
approximation is determined analytically. Linear, nonlinear, and total absorption coefficients, as well as
the refractive indices of GaAs conical dots, are calculated. The effects of the size of the dots and of the
incident electromagnetic field are investigated. Results show that the total absorption coefficient and the
refractive index of the dots largely depend on the size of the dots and on the intensity and polarization of
the incident electromagnetic field.
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Quantum dots (QDs) are quasi-zero-dimension systems,
the carriers of which are confined in all the three spa-
tial dimensions. These quantum systems, which were
first studied by Esaki in 1970[1], are described as “ar-
tificial atoms” because of their δ-function-like density of
states[2].

Unlike bulk crystals with band energies, QDs have dis-
crete subbands because of their three-dimensional (3D)
confinements. Intersubband transitions result in physical
and optical properties and make QDs useful for infrared
(IR) optoelectronic devices. The absorption coefficient
(AC) and refractive index (RI) of the host material
change because of the considerably large dipole matrix
element and the low energy of intersubband transitions.
In particular, the enhancement of nonlinear optical prop-
erties is important in QDs. Nonlinear properties depend
on incident optical intensity; thus, at high incident inten-
sities, the nonlinear properties should be considered.

Researchers have recently investigated the electronic
structure and the linear and nonlinear optical properties
of different shapes of QDs, such as the box-shaped[1],
parabolic cylinder[3], lens-shaped[4], spherical[5], and
disc-like[6] QDs with finite, infinite, or Gaussian
confining potential.

Self-assembled InAs/GaAs QDs formed through
Stranski–Krastanow growth can be pyramid-shaped[2].
These systems are important for laser applications[7].
Thus, researchers have approximated the pyramids by
using cones to obtain the energy levels of conical quan-
tum dots (CQDs)[8−10].

In this letter, a CQD with an infinite barrier potential
is considered. The Schrödinger equation in the effective
mass approximation is solved analytically to determine
the electronic structure of CQDs. Subsequently, the lin-
ear, third-order nonlinear, and total AC and RI changes
are investigated. Moreover, the dependencies of these op-
tical properties on QD size and on the intensity and po-
larization of the incident electromagnetic field are stud-
ied.

We consider that an electron confined in a CQD has
an infinite barrier potential, i.e., V (r) = 0 inside and
V (r) = ∞ outside the CQD. To solve this problem

analytically, we consider several assumptions, i.e., we
deem the potential outside of the QD to be infinite, al-
though in reality, the wavefunctions penetrate into the
host material[10]. In the effective mass approximation,
the Schrödinger equation for an electron inside the cone
is

−
~

2

2m∗
∇2ψ(r) = Eψ(r), (1)

where ~ is the Planck’s constant divided by 2π, and, m∗

is the electron effective mass, E is the energy eigenvalue,
and ψ(r) is the eigenfunction of the system. The geome-
try of the cone is shown in Fig. 1. R′, h, and α are the
basis radius, height, and apex angle of the cone, respec-
tively. The azimuthal symmetry facilitates the approxi-
mation of the cone by means of spherical coordinates. To
obtain the approximation, we consider the origin of the
frame at the cone apex. The polar axis is the cone axis.
R = (R′2 + h2)1/2 represents the radius of the sphere, a
part of which is the cone. The area inside the CQD is
specified by r < R, 0 6 ϕ 6 2π, and θ < α.

Equation (1) is rewritten by using spherical coordi-
nates, and is separable due to the infinite barrier po-
tential. Thus, the eigenfunction ψ(r) can be written as

ψ(r, θ, ϕ) = Nf(r)g(θ)eimϕ, (2)

where N is the normalization constant. To create a
single-valued azimuthal part, m must be an integer if the
full azimuthal range is allowed (|m| = 0, 1, 2, · · · ).

Substituting Eq. (2) into Eq. (1) gives radial and θ
equations. The solutions of the θ equation are associated
Legendre functions of the first and second kinds, i.e.,
Pm

ν (cos θ) and Qm
ν (cos θ). As mentioned previously, we

derive cosα 6 cos θ 6 1. Qm
ν (cos θ) diverges at cos θ = 1

and is thus omitted[11]. The associated Legendre func-
tion Pm

ν (cos θ) is regular at cos θ = 1 and for |cos θ| < 1,
but singular at cos θ = −1 unless ν is an integer. In
this instance, cos θ = −1 is excluded; thus, ν is real
but nonintegral[12]. The spherical Bessel functions of
the first and second kinds are solutions to the radial
equation. The spherical Bessel functions of the second
kind, which are called “spherical Neumann functions,”
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Fig. 1. Geometry of CQD.

are omitted because of their singularity at the origin[11].
Therefore, the wavefunction becomes

ψ(r, θ, ϕ) = Njν(kr)Pm
ν (cos θ)eimϕ, (3)

where k = (2m∗E/~2)1/2. Separation constants ν and k
are determined by the boundary conditions. The CQD
is limited by two surfaces. Thus, the wavefunction ψ(r)
should vanish at θ = α and r = R to satisfy the boundary
conditions. Therefore,

Pm
ν (cosα) = 0, (4)

jν(x) = 0, (5)

where x = kR. Eigenvalues E and eigenfunctions ψ(r)
can be determined by solving these equations.

Figure 2 shows the transition energies of an electron
confined in a CQD from the ground to the first excited
state as a function of the basis radius R′ for the different
apex angles of 20◦, 25◦, 30◦, and 45◦. In the calcula-
tion, m∗ = 0.067m0 is used, where m0 is the electron
mass.

To calculate the optical properties of CQD induced by
the optical transition between two subbands in the con-
duction band, we assume that the system is excited by an
electromagnetic field polarized along the z direction. Us-
ing the compact density matrix formulation of quantum
mechanics, the linear and third-order nonlinear AC(RI)
are obtained by[1]
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where µ is the permeability of the system, εR is the
real part of the permittivity, σν is the carrier density,
Mij = |〈ψi |eẑ|ψj〉| is the matrix element of the dipole
moment, e is the electronic charge, ψi is the eigenfunc-
tion of the ith subband given by Eq. (3), E21 = E2 −E1

is the energy difference between these subbands, Γ12

is the relaxation rate produced by the electron-phonon
interaction and the other collision processes, ε0 is the
permittivity of free space, nr is the refractive index, c
is the speed of light in free space, and I is the incident

optical intensity defined as I = 2ε0nrc |E|
2
.

The total AC(RI) changes α (ω), (∆n(ω)
nr

) are the sum

of the linear and nonlinear ACs(RIs).
Subsequently, we assume a GaAs CQD and then cal-

culate the linear and third-order nonlinear AC and RI
changes. The following parameters are used in the cal-
culations: ε = 13.18, σν = 3 × 1016 cm−3, nr = 3.2, and
Γ12 = 5ps−1[1].

Figures 3(a) and (b) represent the linear, third-order
nonlinear, and total AC and RI changes of a CQD as a
function of photon energy ~ω for I = 0.4 MW/cm2, a

basis radius of R′=10 nm, and an apex angle of α = π
4

[2].
The peak of AC and the zero of RI occur at photon
energy of 157.334 meV, which is equal to the energy
difference between transition subbands. The linear and
third-order nonlinear ACs (RIs) have opposite signs.
Therefore, accounting the third-order AC(RI) reduces
the total AC(RI). Thus, the third-order AC(RI) should
be considered when a strong incident optical intensity is
used.

The total AC and total RI of a CQD as a function of

photon energy ~ω for I = 0.4 MW/cm2, α = π
4

[2], and
for the different basis radii R′ =5, 10, 15, 20 nm are
plotted in Figs. 4(a) and (b), respectively. As the ba-
sis radius increases, the energy difference E21 decreases.
Consequently, the total AC and total RI exhibit red
shifts. The total AC and total RI strongly depend on
CQD basis radius. Increasing the CQD basis radius will
result in a decrease in AC or an increase in RI.

Fig. 2. Transition energies of an electron confined in a CQD
from the ground to the first excited state as a function of the
basis radius R′ for different apex angles.
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Fig. 3. Linear, third-order nonlinear, and total changes of (a)
AC and (b) RI for a CQD with a basis radius of R′ = 10 nm
as a function of photon energy.

The total AC and total RI of a CQD as a function of

photon energy ~ω for I = 0.4 MW/cm
2
, R′ =10 nm, and

for different apex angles α = 20, 30, 45 deg. are plotted
in Figs. 5(a) and (b), respectively. As the apex angle
decreases, the energy difference E21 decreases. Conse-
quently, the total AC and total RI exhibit red shifts.
The total AC and total RI strongly depend on the CQD
apex angle. Decreasing the CQD apex angle will result
in a decrease in AC or an increase in RI.

Shown as Eqs. (6)–(9), in contrast to the linear prop-
erties, third-order nonlinear optical properties largely
depend on the incident optical intensity. Figures 6(a)
and (b) represent the total AC and total RI of a CQD
as a function of photon energy ~ω for a basis radius of

10 nm, α = π
4

[2], and for the different incident optical

intensities of 0.0, 0.4, 0.6, 0.8, 1.0, and 1.3 MW/cm
2
.

The resonance peak and zero positions remain constant
as the intensity increases, but the total AC and total
RI decrease significantly. This condition is accounted
by the increase in intensity, which facilitates an increase
in nonlinear AC(RI) while linear parts remain constant.
Given that the linear and nonlinear parts of AC(RI) have
opposite signs, the total AC and total RI decrease. Fig-
ure 6(a) shows an absorption saturation that begins at

an intensity of 0.8 MW/cm
2
. For higher intensity values,

the absorption peak splits up into two peaks owing to
strong saturation.

We proceed to investigate the effect of incident electro-
magnetic field polarization on the optical properties of
CQD. Specific to this case, we assume that the electro-
magnetic field is polarized along the x direction. Figures
7(a) and (b) represent the total ACs and total RIs of
a CQD as a function of photon energy ~ω with a basis

radius of 10 nm, α = π
4

[2], and I = 0.4 MW/cm
2

for
the electromagnetic field polarization along the z and x
directions. Figure 7(a) shows that the position of the
absorption peak for the x-polarization is at 94.74 meV,
which is lower than that of z-polarization because of
the lower transition energy (E21). The electromagnetic
field polarization and selection rules produce a transition
between the ground and second excited states for the z-
polarization. For x-polarization, the transition occurs
between the ground and first excited states, the transi-
tion energy of which is lower than that of the former.

As regarding Eqs. (3)–(5), we find that the wave-
functions ψ(r) and the energy eigenvalues E depend
on the magnetic quantum number m. The matrix ele-
ments of the dipole moment Mij become nonzero only

Fig. 4. (a) Total AC and (b) total RI of a CQD versus photon
energy for different CQD basis radii.

Fig. 5. (a) Total AC and (b) total RI of a CQD versus photon
energy for different CQD apex angles.

121901-3



COL 10(12), 121901(2012) CHINESE OPTICS LETTERS December 10, 2012

in the transitions with ∆m = 0(∆m = ±1) for z(x)-
polarization. Thus, given the electromagnetic field polar-
ization and the selection rules, only the transitions with
∆m = 0(∆m = ±1) are feasible for z(x)-polarization.
Moreover, the AC value of 474 cm−1 for x-polarization is
lower than that of z-polarization because of the smaller
transition dipole moment in x-polarization. Figure 7(b)
shows that the zero of total RI for x-polarization has a
red shift of 62.59 meV.

We aim to further study by considering the Coulomb
effects and the alteration of the optical properties.

In conclusion, we obtain the energy levels of a CQD
analytically, and subsequently calculate the linear, third-
order nonlinear, total ACs, and total RIs. We investigate
the effects of the size of QD and the intensity and polar-
ization of the incident electromagnetic field on ACs and
RIs. The results show that increasing the size of CQD
results in a red shift and in a decrease in total AC or an
increase in total RI. As the incident intensity increases,
the nonlinear AC and RI increase. Consequently, the
total AC and total RI decrease. Therefore, the nonlinear
parts should be considered in high-intensity electromag-
netic fields. Furthermore, the optical properties of CQD
depend on the polarization of the incident field. The
peak (zero) of AC(RI) exhibits a red shift because of the
shift from the z-direction to the x-direction.

Fig. 6. (a) Total AC and (b) total RI of a CQD versus photon
energy for different incident optical intensities.

Fig. 7. (a) Total ACs and (b) total RIs of a CQD versus
photon energy for electromagnetic fields polarized along the
z and x directions.
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